Ascertainment biases in SNP chips affect measures of population divergence.
نویسندگان
چکیده
Chip-based high-throughput genotyping has facilitated genome-wide studies of genetic diversity. Many studies have utilized these large data sets to make inferences about the demographic history of human populations using measures of genetic differentiation such as F(ST) or principal component analyses. However, the single nucleotide polymorphism (SNP) chip data suffer from ascertainment biases caused by the SNP discovery process in which a small number of individuals from selected populations are used as discovery panels. In this study, we investigate the effect of the ascertainment bias on inferences regarding genetic differentiation among populations in one of the common genome-wide genotyping platforms. We generate SNP genotyping data for individuals that previously have been subject to partial genome-wide Sanger sequencing and compare inferences based on genotyping data to inferences based on direct sequencing. In addition, we also analyze publicly available genome-wide data. We demonstrate that the ascertainment biases will distort measures of human diversity and possibly change conclusions drawn from these measures in some times unexpected ways. We also show that details of the genotyping calling algorithms can have a surprisingly large effect on population genetic inferences. We not only present a correction of the spectrum for the widely used Affymetrix SNP chips but also show that such corrections are difficult to generalize among studies.
منابع مشابه
Estimating population divergence time and phylogeny from single-nucleotide polymorphisms data with outgroup ascertainment bias.
The inference of population divergence times and branching patterns is of fundamental importance in many population genetic analyses. Many methods have been developed for estimating population divergence times, and recently, there has been particular attention towards genome-wide single-nucleotide polymorphisms (SNP) data. However, most SNP data have been affected by an ascertainment bias cause...
متن کاملCorrecting for ascertainment biases when analyzing SNP data: applications to the estimation of linkage disequilibrium.
As large-scale sequencing efforts turn from single genome sequencing to polymorphism discovery, single nucleotide polymorphisms (SNPs) are becoming an increasingly important class of population genetic data. But because of the ascertainment biases introduced by many methods of SNP discovery, most SNP data cannot be analyzed using classical population genetic methods. Statistical methods must in...
متن کاملAscertainment bias in spatially structured populations: a case study in the eastern fence lizard.
Despite increased interest in applying single nucleotide polymorphism (SNP) data to questions in natural systems, one unresolved issue is to what extent the ascertainment bias induced during the SNP discovery phase will impact available analysis methods. Although most studies addressing ascertainment bias have focused on human populations, it is not clear whether existing methods will work when...
متن کاملRobust Demographic Inference from Genomic and SNP Data
We introduce a flexible and robust simulation-based framework to infer demographic parameters from the site frequency spectrum (SFS) computed on large genomic datasets. We show that our composite-likelihood approach allows one to study evolutionary models of arbitrary complexity, which cannot be tackled by other current likelihood-based methods. For simple scenarios, our approach compares favor...
متن کاملPopulation structure with localized haplotype clusters.
We propose a multilocus version of F(ST) and a measure of haplotype diversity using localized haplotype clusters. Specifically, we use haplotype clusters identified with BEAGLE, which is a program implementing a hidden Markov model for localized haplotype clustering and performing several functions including inference of haplotype phase. We apply this methodology to HapMap phase 3 data. With th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 27 11 شماره
صفحات -
تاریخ انتشار 2010